Title of article :
Rearrangement of conditionally convergent series on a small set
Author/Authors :
Filip?w، نويسنده , , Rafa? and Szuca، نويسنده , , Piotr، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
8
From page :
64
To page :
71
Abstract :
We consider ideals I of subsets of the set of natural numbers such that for every conditionally convergent series ∑ n ∈ ω a n and every r ∈ R ¯ there is a permutation π r : ω → ω such that ∑ n ∈ ω a π r ( n ) = r and { n ∈ ω : π r ( n ) ≠ n } ∈ I . We characterize such ideals in terms of extendability to a summable ideal (this answers a question of Wilczyński). Additionally, we consider Sierpiński-like theorems, where one can rearrange only indices with positive a n .
Keywords :
Positive Summability Property , Analytic ideals , P-ideals , Rearrangement of series , Extending ideals , Riemannיs theorem , Statistical density , Summable ideals , Bolzano–Weierstrass property
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560659
Link To Document :
بازگشت