Title of article :
Operator martingale decompositions and the Radon–Nikodým property in Banach spaces
Author/Authors :
Labuschagne، نويسنده , , Coenraad C.A. and Marraffa، نويسنده , , Valeria، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
9
From page :
357
To page :
365
Abstract :
We consider submartingales and uniform amarts of maps acting between a Banach lattice and a Banach lattice or a Banach space. In this measure-free setting of martingale theory, it is known that a Banach space Y has the Radon–Nikodým property if and only if every uniformly norm bounded martingale defined on the Chaney–Schaefer l-tensor product E ⊗ ˜ l Y , where E is a suitable Banach lattice, is norm convergent. We present applications of this result. Firstly, an analogues characterization for Banach lattices Y with the Radon–Nikodým property is given in terms of a suitable set of submartingales (supermartingales) on E ⊗ ˜ l Y . Secondly, we derive a Riesz decomposition for uniform amarts of maps acting between a Banach lattice and a Banach space. This result is used to characterize Banach spaces with the Radon–Nikodým property in terms of uniformly norm bounded uniform amarts of maps that are norm convergent. In the case 1 < p < ∞ , our results yield L p ( μ , Y ) -space analogues of some of the well-known results on uniform amarts in L 1 ( μ , Y ) -spaces.
Keywords :
Bochner norm , Cone absolutely summing operator , Convergent martingale , Convergent submartingale , Dinculeanu operator , Uniform amart , Banach lattice , Banach space , Radon–Nikod?m property
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560738
Link To Document :
بازگشت