Title of article :
A strong convergence theorem for solutions to a nonhomogeneous second order evolution equation
Author/Authors :
Djafari Rouhani، نويسنده , , Behzad and Khatibzadeh، نويسنده , , Hadi، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
7
From page :
648
To page :
654
Abstract :
In this paper, we establish the strong convergence of possible solutions to the following nonhomogeneous second order evolution system { u ″ ( t ) + c u ′ ( t ) ∈ A u ( t ) + f ( t ) a.e. t ∈ ( 0 , + ∞ ) , u ( 0 ) = u 0 , sup t ⩾ 0 | u ( t ) | < + ∞ to an element of A − 1 ( 0 ) , with an exponential rate of convergence when f ≡ 0 , where A is a general maximal monotone operator in a real Hilbert space H, c > 0 is a real constant and f : R + → H is a given function. We show also that the curve u is almost nonexpansive, and present some applications of our result.
Keywords :
monotone operator , asymptotic behavior , Strong convergence , Second order evolution equation , Almost nonexpansive curve
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560763
Link To Document :
بازگشت