Title of article :
Markov interlacing property for exponential polynomials
Author/Authors :
Milev، نويسنده , , Lozko and Naidenov، نويسنده , , Nikola، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
8
From page :
669
To page :
676
Abstract :
Let U n be an extended Tchebycheff system on the real line. Given a point x ¯ = ( x 1 , … , x n ) , where x 1 < ⋯ < x n , we denote by f ( x ¯ ; t ) the polynomial from U n , which has zeros x 1 , … , x n . (It is uniquely determined up to multiplication by a constant.) The system U n has the Markov interlacing property (M) if the assumption that x ¯ and y ¯ interlace implies that the zeros of f ′ ( x ¯ ; t ) and f ′ ( y ¯ ; t ) interlace strictly, unless x ¯ = y ¯ . We formulate a general condition which ensures the validity of the property (M) for polynomials from U n . We also prove that the condition is satisfied for some known systems, including exponential polynomials ∑ i = 0 n b i e α i x and ∑ i = 0 n b i e − ( x − β i ) 2 . As a corollary we obtain that property (M) holds true for Müntz polynomials ∑ i = 0 n b i x γ i , too.
Keywords :
Exponential polynomials , Markov interlacing property , Tchebycheff systems , Müntz polynomials
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561026
Link To Document :
بازگشت