Title of article :
Sharp constant for a 2D anisotropic Sobolev inequality with critical nonlinearity
Author/Authors :
Chen، نويسنده , , Jianqing and Rocha، نويسنده , , Eugénio M.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
8
From page :
685
To page :
692
Abstract :
For the 2-dimensional anisotropic Sobolev inequality of the form ∫ R 2 | u | 6 d x d y ⩽ α ( ∫ R 2 u x 2 d x d y ) 2 ∫ R 2 | D x − 1 u y | 2 d x d y , it is proved that the sharp (smallest) positive constant α is exactly as 3 ( ∫ R 2 ϕ x 2 d x d y ) − 2 , where ϕ is a minimal action solution of ( u x x + | u | 4 u ) x = D x − 1 u y y .
Keywords :
Sharp constant , 2D anisotropic Sobolev inequality , Minimal action solution
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561028
Link To Document :
بازگشت