Title of article :
Semilinear differential inclusions via weak topologies
Author/Authors :
Benedetti، نويسنده , , Irene and Malaguti، نويسنده , , Luisa and Taddei، نويسنده , , Valentina، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
13
From page :
90
To page :
102
Abstract :
The paper deals with the multivalued initial value problem x ′ ∈ A ( t , x ) x + F ( t , x ) for a.a. t ∈ [ a , b ] , x ( a ) = x 0 in a separable, reflexive Banach space E. The nonlinearity F is weakly upper semicontinuous in x and the investigation includes the case when both A and F have a superlinear growth in x. We prove the existence of local and global classical solutions in the Sobolev space W 1 , p ( [ a , b ] , E ) with 1 < p < ∞ . Introducing a suitably defined Lyapunov-like function, we are able to investigate the topological structure of the solution set. Our main tool is a continuation principle in Frechét spaces and we prove the required pushing condition in two different ways. Some examples complete the discussion.
Keywords :
Compact operators , Continuation principles , Pushing condition , Semilinear differential inclusions in Banach spaces
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561043
Link To Document :
بازگشت