Title of article :
Orthogonal sequences and regularity of embeddings into finite-dimensional spaces
Author/Authors :
Pinto de Moura، نويسنده , , E. and Robinson، نويسنده , , J.C.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
9
From page :
254
To page :
262
Abstract :
This paper focuses on the regularity of linear embeddings of finite-dimensional subsets of Hilbert and Banach spaces into Euclidean spaces. We study orthogonal sequences in a Hilbert space H, whose elements tend to zero, and similar sequences in the space c 0 of null sequences. The examples studied show that the results due to Hunt and Kaloshin (Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity 12 (1999) 1263–1275) and Robinson (Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces, Nonlinearity 22 (2009) 711–728) for subsets of Hilbert and Banach spaces with finite box-counting dimension are asymptotically sharp. An analogous argument allows us to obtain a lower bound for the power of the logarithmic correction term in an embedding theorem proved by Olson and Robinson (Almost bi-Lipschitz embeddings and almost homogeneous sets, Trans. Amer. Math. Soc. 362 (1) (2010) 145–168) for subsets X of Hilbert spaces when X − X has finite Assouad dimension.
Keywords :
Embedding theorems , Assouad dimension , Thickness exponent , Box-counting dimension
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561056
Link To Document :
بازگشت