Title of article :
The Black–Scholes equation in stochastic volatility models
Author/Authors :
Tiina and Ekstrِm، نويسنده , , Erik and Tysk، نويسنده , , Johan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
10
From page :
498
To page :
507
Abstract :
We study the Black–Scholes equation in stochastic volatility models. In particular, we show that the option price is the unique classical solution to a parabolic differential equation with a certain boundary behaviour for vanishing values of the volatility. If the boundary is attainable, then this boundary behaviour serves as a boundary condition and guarantees uniqueness in appropriate function spaces. On the other hand, if the boundary is non-attainable, then the boundary behaviour is not needed to guarantee uniqueness, but is nevertheless very useful for instance from a numerical perspective.
Keywords :
parabolic equations , Option Pricing , stochastic volatility , Feynman–Kac theorems , Boundary conditions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561078
Link To Document :
بازگشت