Title of article :
Attainment and (sub)differentiability of the infimal convolution of a function and the square of the norm
Author/Authors :
Cibulka، نويسنده , , R. and Fabian، نويسنده , , M.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
13
From page :
538
To page :
550
Abstract :
Let X be a Banach space whose norm is simultaneously LUR and Gateaux (Fréchet) smooth. Under some assumptions, it is shown that the infimal convolution of a fairly general function on X and the square of the norm is generically strongly attained and hence is Gateaux (Fréchet) differentiable. This contains a result of S. Dutta on distance functions.
Keywords :
Infimal convolution , Strong attainment , Dense G ? set , Gateaux , Fréchet , and Clarke subdifferential , Fréchet smooth norm , Uniformly Gateaux smooth norm , Locally uniformly rotund norm , Distance function
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561081
Link To Document :
بازگشت