Title of article :
A one-dimensional nonlinear heat equation with a singular term
Author/Authors :
Zhou، نويسنده , , Wenshu and Lei، نويسنده , , Peidong، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
16
From page :
711
To page :
726
Abstract :
In this paper we are concerned with the Dirichlet problem for the one-dimensional nonlinear heat equation with a singular term: { u t = u x x − σ u m u x 2 + f ( x , t ) , u > 0 , ( x , t ) ∈ Q T , u ( a , t ) = u ( b , t ) = 0 , t ∈ [ 0 , T ] , u ( x , 0 ) = u 0 ( x ) , x ∈ I , where T > 0 , Q T = I × ( 0 , T ] , I = ( a , b ) with a < b , σ > 0 , − 1 ⩾ m > − 2 . We find that the problem may have multiple weak solutions for some initial data. To prove this, we need to study existence of positive classical solutions. In addition, we also discuss existence of a positive stationary solution for the above problem and relations between solutions of the above problem and the following problem: { u t = u x x + f ( x , t ) , ( x , t ) ∈ Q T , u ( b , t ) = u ( a , t ) = 0 , t ∈ [ 0 , T ] , u ( x , 0 ) = u 0 ( x ) , x ∈ I .
Keywords :
Heat equation , Weak solution , nonuniqueness , Stationary solution
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561094
Link To Document :
بازگشت