• Title of article

    Classification of bifurcation diagrams of a p-Laplacian Dirichlet problem with examples

  • Author/Authors

    Wang، نويسنده , , Shin-Hwa and Yeh، نويسنده , , Tzung-Shin، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2010
  • Pages
    17
  • From page
    188
  • To page
    204
  • Abstract
    We study bifurcation diagrams of positive solutions of the p-Laplacian Dirichlet problem { ( φ p ( u ′ ( x ) ) ) ′ + f λ ( u ( x ) ) = 0 , − 1 < x < 1 , u ( − 1 ) = u ( 1 ) = 0 , where φ p ( y ) = | y | p − 2 y , ( φ p ( u ′ ) ) ′ is the one-dimensional p-Laplacian, and p > 1 and λ > 0 are two bifurcation parameters. Assume that f λ ( u ) = λ g ( u ) − h ( u ) where g , h ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ ) satisfy hypotheses (H1)–(H5) presented herein. For different values p with 1 < p ⩽ 2 and with p > 2 , we give a classification of totally six different bifurcation diagrams. We prove that, on the ( λ , ‖ u ‖ ∞ ) -plane, each possible bifurcation diagram consists of exactly one curve with exactly one turning point where the curve turns to the right. Hence we are able to determine the exact multiplicity of positive solutions. In addition, for 1 < p ⩽ 2 and for p > 2 , we give interesting examples f λ ( u ) = λ ( k u p − 1 + u q ) − u r satisfying r > q > p − 1 and k ⩾ 0 , and show complete evolution of bifurcation diagrams as evolution parameter k varies from 0 to ∞.
  • Keywords
    Bifurcation diagram , Exact multiplicity , Positive solution , p-laplacian , Time map
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2010
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    1561116