Title of article
Classification of bifurcation diagrams of a p-Laplacian Dirichlet problem with examples
Author/Authors
Wang، نويسنده , , Shin-Hwa and Yeh، نويسنده , , Tzung-Shin، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2010
Pages
17
From page
188
To page
204
Abstract
We study bifurcation diagrams of positive solutions of the p-Laplacian Dirichlet problem { ( φ p ( u ′ ( x ) ) ) ′ + f λ ( u ( x ) ) = 0 , − 1 < x < 1 , u ( − 1 ) = u ( 1 ) = 0 , where φ p ( y ) = | y | p − 2 y , ( φ p ( u ′ ) ) ′ is the one-dimensional p-Laplacian, and p > 1 and λ > 0 are two bifurcation parameters. Assume that f λ ( u ) = λ g ( u ) − h ( u ) where g , h ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ ) satisfy hypotheses (H1)–(H5) presented herein. For different values p with 1 < p ⩽ 2 and with p > 2 , we give a classification of totally six different bifurcation diagrams. We prove that, on the ( λ , ‖ u ‖ ∞ ) -plane, each possible bifurcation diagram consists of exactly one curve with exactly one turning point where the curve turns to the right. Hence we are able to determine the exact multiplicity of positive solutions. In addition, for 1 < p ⩽ 2 and for p > 2 , we give interesting examples f λ ( u ) = λ ( k u p − 1 + u q ) − u r satisfying r > q > p − 1 and k ⩾ 0 , and show complete evolution of bifurcation diagrams as evolution parameter k varies from 0 to ∞.
Keywords
Bifurcation diagram , Exact multiplicity , Positive solution , p-laplacian , Time map
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2010
Journal title
Journal of Mathematical Analysis and Applications
Record number
1561116
Link To Document