Title of article :
Classification of bifurcation diagrams of a p-Laplacian Dirichlet problem with examples
Author/Authors :
Wang، نويسنده , , Shin-Hwa and Yeh، نويسنده , , Tzung-Shin، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
17
From page :
188
To page :
204
Abstract :
We study bifurcation diagrams of positive solutions of the p-Laplacian Dirichlet problem { ( φ p ( u ′ ( x ) ) ) ′ + f λ ( u ( x ) ) = 0 , − 1 < x < 1 , u ( − 1 ) = u ( 1 ) = 0 , where φ p ( y ) = | y | p − 2 y , ( φ p ( u ′ ) ) ′ is the one-dimensional p-Laplacian, and p > 1 and λ > 0 are two bifurcation parameters. Assume that f λ ( u ) = λ g ( u ) − h ( u ) where g , h ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ ) satisfy hypotheses (H1)–(H5) presented herein. For different values p with 1 < p ⩽ 2 and with p > 2 , we give a classification of totally six different bifurcation diagrams. We prove that, on the ( λ , ‖ u ‖ ∞ ) -plane, each possible bifurcation diagram consists of exactly one curve with exactly one turning point where the curve turns to the right. Hence we are able to determine the exact multiplicity of positive solutions. In addition, for 1 < p ⩽ 2 and for p > 2 , we give interesting examples f λ ( u ) = λ ( k u p − 1 + u q ) − u r satisfying r > q > p − 1 and k ⩾ 0 , and show complete evolution of bifurcation diagrams as evolution parameter k varies from 0 to ∞.
Keywords :
Bifurcation diagram , Exact multiplicity , Positive solution , p-laplacian , Time map
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561116
Link To Document :
بازگشت