Title of article :
Decompositions of Besov–Hausdorff and Triebel–Lizorkin–Hausdorff spaces and their applications
Author/Authors :
Yuan، نويسنده , , Wen and Sawano، نويسنده , , Yoshihiro and Yang، نويسنده , , Dachun، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
22
From page :
736
To page :
757
Abstract :
Let p ∈ ( 1 , ∞ ) , q ∈ [ 1 , ∞ ) , s ∈ R and τ ∈ [ 0 , 1 − 1 max { p , q } ] . In this paper, the authors establish the φ-transform characterizations of Besov–Hausdorff spaces B H ˙ p , q s , τ ( R n ) and Triebel–Lizorkin–Hausdorff spaces F H ˙ p , q s , τ ( R n ) ( q > 1 ); as applications, the authors then establish their embedding properties (which on B H ˙ p , q s , τ ( R n ) is also sharp), smooth atomic and molecular decomposition characterizations for suitable τ. Moreover, using their atomic and molecular decomposition characterizations, the authors investigate the trace properties and the boundedness of pseudo-differential operators with homogeneous symbols in B H ˙ p , q s , τ ( R n ) and F H ˙ p , q s , τ ( R n ) ( q > 1 ), which generalize the corresponding classical results on homogeneous Besov and Triebel–Lizorkin spaces when p ∈ ( 1 , ∞ ) and q ∈ [ 1 , ∞ ) by taking τ = 0 .
Keywords :
trace , Pseudo-differential operator , ?-transform , Hausdorff capacity , Besov space , Triebel–Lizorkin space , embedding , atom , molecule
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561166
Link To Document :
بازگشت