Title of article :
Global attractor for a class of nonlinear lattices
Author/Authors :
Oliveira، نويسنده , , Jلuber C. and Pereira، نويسنده , , Jardel M. Rocha، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
We consider a class of nonlinear lattices with nonlinear damping(0.1) u ¨ n ( t ) + ( − 1 ) p Δ p u n ( t ) + α u n ( t ) + h ( u n ( t ) ) + g ( n , u ˙ n ( t ) ) = f n , where n ∈ Z , t ∈ R + , α is a real positive constant, p is any positive integer and Δ is the discrete one-dimensional Laplace operator. Under suitable conditions on h and g we prove the existence of a global attractor for the continuous semigroup associated with (0.1). Our proofs are based on a difference inequality due to M. Nakao [M. Nakao, Global attractors for nonlinear wave equations with nonlinear dissipative terms, J. Differential Equations 227 (2006) 204–229].
Keywords :
Nonlinear lattices , global attractor , Nonlinear damping
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications