Title of article :
Sobolev type inequalities on Riemannian manifolds
Author/Authors :
Adriano، نويسنده , , Levi and Xia، نويسنده , , Changyu، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
12
From page :
372
To page :
383
Abstract :
This paper studies Sobolev type inequalities on Riemannian manifolds. We show that on a complete non-compact Riemannian manifold the constant in the Gagliardo–Nirenberg inequality cannot be smaller than the optimal one on the Euclidean space of the same dimension. We also show that a complete non-compact manifold with asymptotically non-negative Ricci curvature admitting some Gagliardo–Nirenberg inequality is not very far from the Euclidean space.
Keywords :
Log-Sobolev inequalities , Gagliardo–Nirenberg inequalities , Riemannian manifolds , Asymptotically non-negative Ricci curvature , Maximal volume growth
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561264
Link To Document :
بازگشت