Title of article :
Global bifurcation for a class of degenerate elliptic equations with variable exponents
Author/Authors :
Kim، نويسنده , , Yunho and Wang، نويسنده , , Lihe and Zhang، نويسنده , , Chao، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
We are concerned with the following nonlinear problem − div ( w ( x ) | ∇ u | p ( x ) − 2 ∇ u ) = μ g ( x ) | u | p ( x ) − 2 u + f ( λ , x , u , ∇ u ) in Ω subject to Dirichlet boundary conditions, provided that μ is not an eigenvalue of the above divergence form. The purpose of this paper is to study the global behavior of the set of solutions for the above equation, by applying a bifurcation result for nonlinear operator equations.
Keywords :
p ( x ) -Laplacian , Weighted variable exponent Lebesgue–Sobolev spaces , Bifurcation
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications