Title of article :
Trigonometric bases for matrix weighted -spaces
Author/Authors :
Nielsen، نويسنده , , Morten، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
9
From page :
784
To page :
792
Abstract :
We give a complete characterization of 2π-periodic matrix weights W for which the vector-valued trigonometric system forms a Schauder basis for the matrix weighted space L p ( T ; W ) . Then trigonometric quasi-greedy bases for L p ( T ; W ) are considered. Quasi-greedy bases are systems for which the simple thresholding approximation algorithm converges in norm. It is proved that such a trigonometric basis can be quasi-greedy only for p = 2 , and whenever the system forms a quasi-greedy basis, the basis must actually be a Riesz basis.
Keywords :
Matrix weight , Muchenhoupt condition , Shift invariant system , Schauder basis , Trigonometric system , Quasi-greedy basis
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561304
Link To Document :
بازگشت