Title of article :
The Khavinson–Shapiro conjecture and polynomial decompositions
Author/Authors :
Lundberg، نويسنده , , Erik and Render، نويسنده , , Hermann، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
8
From page :
506
To page :
513
Abstract :
The main result of the paper states the following: Let ψ be a polynomial in n variables. Suppose that there exists a constant C > 0 such that any polynomial f has a polynomial decomposition f = ψ q f + h f with Δ k h f = 0 and deg q f ⩽ deg f + C . Then deg ψ ⩽ 2 k . Here Δ k is the kth iterate of the Laplace operator Δ. As an application, new classes of domains in R n are identified for which the Khavinson–Shapiro conjecture holds.
Keywords :
Harmonic divisors , Algebraic Dirichlet problems , Fischer decompositions , Harmonic and polyharmonic polynomials
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561603
Link To Document :
بازگشت