Title of article :
Remarks on Hardy spaces defined by non-smooth approximate identity
Author/Authors :
Yang، نويسنده , , Qi-Xiang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
6
From page :
253
To page :
258
Abstract :
We study in this paper some relations between Hardy spaces H ϕ 1 which are defined by non-smooth approximate identity ϕ ( x ) , and the end-point Triebel–Lizorkin spaces F ˙ 1 0 , q ( 1 ⩽ q ⩽ ∞ ). First, we prove that H 1 ( R n ) ⊂ H ϕ 1 ( R n ) for compact ϕ which satisfies a slightly weaker condition than Fefferman and Steinʹs condition. Then we prove that non-trivial Hardy space H ϕ 1 ( R ) defined by approximate identity ϕ must contain Besov space B ˙ 1 0 , 1 ( R ) . Thirdly, we construct certain functions ϕ ( x ) ∈ B 1 0 , 1 ∩ Log 0 1 2 ( [ − 1 , 1 ] ) and a function b ( x ) ∈ ⋂ q > 1 F ˙ 1 0 , q such that Daubechies wavelet function ψ ∈ H ϕ 1 but b ϕ ⁎ ∉ L 1 .
Keywords :
Atomic space , End-point Triebel–Lizorkin spaces , Approximate identity , wavelets
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561647
Link To Document :
بازگشت