Title of article :
Natural solutions of rational Stieltjes moment problems
Author/Authors :
Bultheel، نويسنده , , A. and Gonzلlez-Vera، نويسنده , , P. and Hendriksen، نويسنده , , E. and Njهstad، نويسنده , , O.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
13
From page :
571
To page :
583
Abstract :
In the strong or two-point Stieltjes moment problem, one has to find a positive measure on [ 0 , ∞ ) for which infinitely many moments are prescribed at the origin and at infinity. Here we consider a multipoint version in which the origin and the point at infinity are replaced by sequences of points that may or may not coincide. In the indeterminate case, two natural solutions μ 0 and μ ∞ exist that can be constructed by a limiting process of approximating quadrature formulas. The supports of these natural solutions are disjoint (with possible exception of the origin). The support points are accumulation points of sequences of zeros of even and odd indexed orthogonal rational functions. These functions are recursively computed and appear as denominators in approximants of continued fractions. They replace the orthogonal Laurent polynomials that appear in the two-point case. In this paper we consider the properties of these natural solutions and analyze the precise behavior of which zero sequences converge to which support points.
Keywords :
orthogonal polynomials , Orthogonal rational functions , Stieltjes moment problem , Continued fractions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561677
Link To Document :
بازگشت