Title of article :
Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems
Author/Authors :
Chen، نويسنده , , Wenxiong and Zhu، نويسنده , , Jiuyi، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
10
From page :
744
To page :
753
Abstract :
Let B = B 1 ( 0 ) be the unit ball in R n and r = | x | . We study the poly-harmonic Dirichlet problem { ( − Δ ) m u = f ( u ) in B , u = ∂ u ∂ r = ⋯ = ∂ m − 1 u ∂ r m − 1 = 0 on ∂ B . the corresponding integral equation and the method of moving planes in integral forms, we show that the positive solutions are radially symmetric and monotone decreasing about the origin. We also obtain regularity for solutions.
Keywords :
Poly-harmonic Dirichlet problems , Unit ball , Radial symmetry , Regularity , Method of moving planes in integral forms
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561690
Link To Document :
بازگشت