Title of article :
Extreme points and isometries on vector-valued Lipschitz spaces
Author/Authors :
Botelho، نويسنده , , Fernanda and Fleming، نويسنده , , Richard J. and Jamison، نويسنده , , James E.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
12
From page :
821
To page :
832
Abstract :
For a Banach space E and a compact metric space ( X , d ) , a function F : X → E is a Lipschitz function if there exists k > 0 such that ‖ F ( x ) − F ( y ) ‖ ⩽ k d ( x , y ) for all x , y ∈ X . The smallest such k is called the Lipschitz constant L ( F ) for F. The space Lip ( X , E ) of all Lipschitz functions from X to E is a Banach space under the norm defined by ‖ F ‖ = max { L ( F ) , ‖ F ‖ ∞ } , where ‖ F ‖ ∞ = sup { ‖ F ( x ) ‖ : x ∈ X } . Recent results characterizing isometries on these vector-valued Lipschitz spaces require the Banach space E to be strictly convex. We investigate the nature of the extreme points of the dual ball for Lip ( X , E ) and use the information to describe the surjective isometries on Lip ( X , E ) under certain conditions on E, where E is not assumed to be strictly convex. We make use of an embedding of Lip ( X , E ) into a space of continuous vector-valued functions on a certain compact set.
Keywords :
isometry , Lipschitz function , extreme points
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561994
Link To Document :
بازگشت