Title of article :
Regions of meromorphy and value distribution of geometrically converging rational functions
Author/Authors :
Blatt، نويسنده , , H.-P. and Grothmann، نويسنده , , R. K. Kovacheva، نويسنده , , R.K.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
11
From page :
66
To page :
76
Abstract :
Let D be a region, { r n } n ∈ N a sequence of rational functions of degree at most n and let each r n have at most m poles in D, for m ∈ N fixed. We prove that if { r n } n ∈ N converges geometrically to a function f on some continuum S ⊂ D and if the number of zeros of r n in any compact subset of D is of growth o ( n ) as n → ∞ , then the sequence { r n } n ∈ N converges m 1 -almost uniformly to a meromorphic function in D. This result about meromorphic continuation is used to obtain Picard-type theorems for the value distribution of m 1 -maximally convergent rational functions, especially in Padé approximation and Chebyshev rational approximation.
Keywords :
Rational approximation , Meromorphic functions , Distribution of zeros and poles , a-Values , Padé approximation , m 1 -Maximal convergence , Harmonic majorant , Picard theorem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562017
Link To Document :
بازگشت