Title of article :
Analysis of the Hopf bifurcation for the family of angiogenesis models
Author/Authors :
Piotrowska، نويسنده , , Monika J. and Fory?، نويسنده , , Urszula، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
24
From page :
180
To page :
203
Abstract :
In this paper we study a family of models with delays describing the process of angiogenesis, that is a physiological process involving the growth of new blood vessels from pre-existing ones. This family includes the well-known models of tumour angiogenesis proposed by Hahnfeldt et al. and dʼOnofrio–Gandolfi and is based on the Gompertz type of the tumour growth. As a consequence we start our analysis from the influence of delay onto the Gompertz model dynamics. The family of models considered in this paper depends on two time delays and a parameter α ∈ [ 0 , 1 ] which reflects how strongly the vessels dynamics depends on the ratio between tumour and vessels volume. We focus on the analysis of the model in three cases: one of the delays is equal to 0 or both delays are equal, depending on the parameter α. We study the stability switches, the Hopf bifurcation and the stability of arising periodic orbits for different α ∈ [ 0 , 1 ] , especially for α = 1 and α = 0 which reflects the Hahnfeldt et al. and the dʼOnofrio–Gandolfi models. For comparison we use also the value α = 1 / 2 .
Keywords :
Angiogenesis , stability , Hopf bifurcation , Stability switches
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562028
Link To Document :
بازگشت