Title of article :
Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems
Author/Authors :
Sakamoto، نويسنده , , Kenichi and Yamamoto، نويسنده , , Masahiro، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
22
From page :
426
To page :
447
Abstract :
We consider initial value/boundary value problems for fractional diffusion-wave equation: ∂ t α u ( x , t ) = L u ( x , t ) , where 0 < α ⩽ 2 , where L is a symmetric uniformly elliptic operator with t-independent smooth coefficients. First we establish the unique existence of the weak solution and the asymptotic behavior as the time t goes to ∞ and the proofs are based on the eigenfunction expansions. Second for α ∈ ( 0 , 1 ) , we apply the eigenfunction expansions and prove (i) stability in the backward problem in time, (ii) the uniqueness in determining an initial value and (iii) the uniqueness of solution by the decay rate as t → ∞ , (iv) stability in an inverse source problem of determining t-dependent factor in the source by observation at one point over ( 0 , T ) .
Keywords :
Initial value/boundary value problem , Fractional diffusion equation , Inverse problem , well-posedness
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562046
Link To Document :
بازگشت