Title of article :
Non-uniform dependence on initial data for the periodic Degasperis–Procesi equation
Author/Authors :
Fu، نويسنده , , Yanggeng and Liu، نويسنده , , Zhengrong، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
10
From page :
293
To page :
302
Abstract :
In this paper, we show that the solution map of the periodic Degasperis–Procesi equation is not uniformly continuous in Sobolev spaces H s ( T ) for s > 3 / 2 . This extends previous result for s ⩾ 2 to the whole range of s for which the local well-posedness is known. Our proof is based on the method of approximate solutions and well-posedness estimates for the actual solutions.
Keywords :
Periodic Cauchy problem , Non-uniform dependence , sobolev spaces , Approximate solutions , Degasperis–Procesi equation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2011
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562164
Link To Document :
بازگشت