Title of article :
Periodicity of signs of Fourier coefficients of eta-quotients
Author/Authors :
Kim، نويسنده , , Byungchan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Abstract :
We study the periodicity of signs of Fourier coefficients of the function, ∏ d | α f ( − q d ) r d , where α is a positive integer, f ( − q ) = ∏ n = 1 ∞ ( 1 − q n ) , and r d ∈ Z . As an application, we will prove the periodicity of signs for the crank differences conjectured by G.E. Andrews and R. Lewis and for the weighted counts of certain types of partitions.
Keywords :
Periodicity for the sign changes , Integer partitions , Circle method , Eta-quotients
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications