Title of article :
Upper and lower bounds for normal derivatives of spectral clusters of Dirichlet Laplacian
Author/Authors :
Xu، نويسنده , , Xiangjin، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
10
From page :
374
To page :
383
Abstract :
In this paper, we prove the upper and lower bounds for normal derivatives of spectral clusters u = χ λ s f of Dirichlet Laplacian Δ M , c s λ ‖ u ‖ L 2 ( M ) ⩽ ‖ ∂ ν u ‖ L 2 ( ∂ M ) ⩽ C s λ ‖ u ‖ L 2 ( M ) where the upper bound is true for any Riemannian manifold, and the lower bound is true for some small 0 < s < s M , where s M depends on the manifold only, provided that M has no trapped geodesics (see Theorem 1.3 for a precise statement), which generalizes the early results for single eigenfunctions by Hassell and Tao in 2002.
Keywords :
Normal derivatives , Dirichlet Laplacian , No trapped geodesics , Spectral cluster
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562415
Link To Document :
بازگشت