Title of article :
Multiple solutions of impulsive Sturm–Liouville boundary value problem via lower and upper solutions and variational methods
Author/Authors :
Tian، نويسنده , , Yu Hui Ge، نويسنده , , Weigao، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
15
From page :
475
To page :
489
Abstract :
In this paper, we prove the existence of multiple solutions for second order Sturm–Liouville boundary value problem { − L u = f ( x , u ) , x ∈ [ 0 , 1 ] \ { x 1 , x 2 , … , x l } , − Δ ( p ( x i ) u ′ ( x i ) ) = I i ( u ( x i ) ) , i = 1 , 2 , … , l , R 1 ( u ) = 0 , R 2 ( u ) = 0 , where L u = ( p ( x ) u ′ ) ′ − q ( x ) u is a Sturm–Liouville operator, R 1 ( u ) = α u ′ ( 0 ) − β u ( 0 ) , R 2 ( u ) = γ u ′ ( 1 ) + σ u ( 1 ) . The technical approach is fully based on lower and upper solutions and variational methods. The interesting point is that the property that the critical points of the energy functional are exactly the fixed points of an operator that involves the Greenʼs function. Besides, the existence of four solutions is given.
Keywords :
multiple solutions , critical point , Lower and upper solutions , variational methods , Impulsive Sturm–Liouville boundary value problem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562424
Link To Document :
بازگشت