Title of article :
Asymptotic behavior of normal derivatives of eigenfunctions for the Dirichlet Laplacian
Author/Authors :
Miyazaki، نويسنده , , Yoichi، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
14
From page :
205
To page :
218
Abstract :
We give answers to the problem posed by Ozawa in [S. Ozawa, Asymptotic property of eigenfunctions of the Laplacian at the boundary, Osaka J. Math. 30 (1993) 303–314]. For the Dirichlet Laplacian in a bounded domain, we define the function E ( λ , x ) from the normal derivatives, at a boundary point x, of the eigenfunctions whose corresponding eigenvalues do not exceed λ. If the domain is a ball, we show that Ozawaʼs conjecture is true, namely that E ( λ , x ) satisfies a two-term asymptotic formula as λ → ∞ . For a general C 2 bounded domain, we improve the remainder estimate in the one-term asymptotic formula for E ( λ , x ) , which Ozawa obtained.
Keywords :
Dirichlet boundary condition , Laplacian , eigenfunction , Spectral function , partition function
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562503
Link To Document :
بازگشت