Title of article :
On variable exponent Lebesgue spaces of entire analytic functions
Author/Authors :
Motos، نويسنده , , Joaquيn and Planells، نويسنده , , Marيa Jesْs and Talavera، نويسنده , , César F.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
13
From page :
775
To page :
787
Abstract :
In this article we introduce the variable Lebesgue spaces of entire analytic functions L p ( ⋅ ) K . A maximal inequality of Jawerth is generalized to our context and inequalities of Plancherel–Polya–Nikolʼskij type are obtained. We calculate the dual of the space L p ( ⋅ ) K when the function χ K is an L p ( ⋅ ) -Fourier multiplier and a number of consequences of this result (on sequence space representations) is given. Finally, a Fourier multiplier theorem by Triebel is extended to the setting of the variable Lebesgue spaces.
Keywords :
Variable exponent , Fourier multipliers , Maximal operators , L p -spaces of entire analytic functions , Lebesgue spaces
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562549
Link To Document :
بازگشت