Title of article :
Ground state solutions for quasilinear Schrِdinger systems
Author/Authors :
Guo، نويسنده , , Yuxia and Tang، نويسنده , , Zhongwei، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Abstract :
This paper is concerned with the quasilinear Schrödinger systems in R N : { − Δ u + ( λ a ( x ) + 1 ) u − 1 2 ( Δ | u | 2 ) u = 2 α α + β | u | α − 2 | v | β u , − Δ v + ( λ b ( x ) + 1 ) v − 1 2 ( Δ | v | 2 ) v = 2 β α + β | u | α | v | β − 2 v , u ( x ) → 0 , v ( x ) → 0 as | x | → ∞ , where λ > 0 is a parameter, α > 2 , β > 2 , α + β < 2 ⋅ 2 ⁎ and 2 ⁎ = 2 N N − 2 for N ⩾ 3 , 2 ⁎ = + ∞ for N = 1 , 2 is the critical Sobolev exponent. By using the Nehari manifold method and concentration compactness principle in the Orlicz space, we prove the existence of ground state solution which localize near the potential well int { a − 1 ( 0 ) } = int b − 1 ( 0 ) for λ large enough.
Keywords :
Quasilinear Schrِdinger systems , Orlicz space , Ground state solution
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications