Title of article :
Lebesgue–Bochner spaces, decomposable sets and strong weakly compact generation
Author/Authors :
Lajara، نويسنده , , Sebastiلn and Rodrيguez، نويسنده , , José، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
5
From page :
665
To page :
669
Abstract :
Let X be a Banach space and μ a probability measure. We prove that X is strongly reflexive (resp. super-reflexive) generated if, and only if, there exist a reflexive (resp. super-reflexive) Banach space Z and a bounded linear operator S : Z → L 1 ( μ , X ) such that for each weakly compact decomposable set K ⊂ L 1 ( μ , X ) and each ε > 0 there is n ∈ N such that K ⊂ n S ( B Z ) + ε B L 1 ( μ , X ) . This answers partially a question posed by Schlüchtermann and Wheeler. Some applications are also given.
Keywords :
Strongly generated Banach space , Lebesgue–Bochner space , uniform Eberlein compact space , Decomposable set , Smoothness
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562643
Link To Document :
بازگشت