Title of article :
Lq-structure of variable exponent spaces
Author/Authors :
Hernلndez، نويسنده , , Francisco L. and Ruiz، نويسنده , , César، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
9
From page :
899
To page :
907
Abstract :
It is shown that a separable variable exponent (or Nakano) function space L p ( ⋅ ) ( Ω ) has a lattice-isomorphic copy of l q if and only if q ∈ R p ( ⋅ ) , the essential range set of the exponent function p ( ⋅ ) . Consequently R p ( ⋅ ) is a lattice-isomorphic invariant set. The values of q such that l q embeds isomorphically in L p ( ⋅ ) ( Ω ) is determined. It is also proved the existence of a bounded orthogonal l q -projection in the space L p ( ⋅ ) ( Ω ) , for every q ∈ R p ( ⋅ ) .
Keywords :
Bounded projections , Variable exponent spaces , Isomorphic l p -copies
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562663
Link To Document :
بازگشت