Title of article :
Stability in the family of ω-limit sets of alternating systems
Author/Authors :
D?Aniello، نويسنده , , Emma and Steele، نويسنده , , T.H.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
13
From page :
1191
To page :
1203
Abstract :
Let f and g be elements of C ( I ) with x ∈ I = [ 0 , 1 ] . We study the ω-limit sets ω ( x , [ f , g ] ) generated by alternating trajectories of the form γ ( x , [ f , g ] ) = { x , f ( x ) , g ( f ( x ) ) , f ( g ( f ( x ) ) ) , … } , as well as the sets Λ ( [ f , g ] ) = ⋃ x ∈ I ω ( x , [ f , g ] ) and L ( [ f , g ] ) = { ω ( x , [ f , g ] ) : x ∈ I } . In particular, we show that(1) s constant on no interval J ⊆ I , then there exists a residual set S ⊆ C ( I ) so that the maps Λ : C ( I ) × C ( I ) → K and L : C ( I ) × C ( I ) → K ⋆ taking ( f , g ) to Λ ( [ f , g ] ) and L ( [ f , g ] ) , respectively, are both continuous at ( f , g ) whenever f ∈ S . p ω : I × C ( I ) × C ( I ) → K taking ( x , f , g ) to ω ( x , [ f , g ] ) is in the second class of Baire, and for any g ∈ C ( I ) there exists a residual set T ⊆ I × C ( I ) so that ω is continuous at ( x , f , g ) whenever ( x , f ) ∈ T . s constant on no interval J ⊆ I , then there exists a residual set D ⊆ I × C ( I ) so that ω ( x , [ f , g ] ) = ω ( x , g ∘ f ) ∪ ω ( f ( x ) , f ∘ g ) , where both ω ( x , g ∘ f ) and ω ( f ( x ) , f ∘ g ) are adding machines of type ∞, whenever ( x , g ) ∈ D .
Keywords :
?-limit set , Typical behavior , Alternating system
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562684
Link To Document :
بازگشت