Title of article :
Duality theorems in the Hermitian setting
Author/Authors :
Colombo، نويسنده , , Fabrizio and Sabadini، نويسنده , , Irene and Struppa، نويسنده , , Daniele C.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
12
From page :
47
To page :
58
Abstract :
In this paper we prove the Poincaré Lemma for circulant matrices with C ∞ entries and the Mittag–Leffler theorem for Hermitian monogenic matrix functions. We then prove algebraic and topological duality theorems for Hermitian monogenic matrix functions. Finally, we use one of these duality theorems to characterize the C 2 n -module H ( K ) ′ , where H denotes the sheaf of Hermitian monogenic functions. These results extend and clarify those obtained in R. Abreu-Blaya et al. (2012) [1].
Keywords :
Hermitian Clifford analysis , Fréchet modules , Duality theorems
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562705
Link To Document :
بازگشت