Title of article :
Eigenvalue counting estimates for a class of linear spectral pencils with applications to zero modes
Author/Authors :
Elton، نويسنده , , Daniel M. and T?، نويسنده , , Ng?c Tr?، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
6
From page :
613
To page :
618
Abstract :
Consider a linear spectral pencil of the form P ( − i ∇ ) − z Q ( x ) , z ∈ C . If P − 1 ∈ weak- L p and Q ∈ L p for some 1 < p < ∞ , it is shown that the total number of eigenvalues with | z | ⩽ R is bounded by C [ ‖ P − 1 ‖ L w p ⁎ ‖ Q ‖ L p R ] p . An application is made to estimate the frequency with which zero modes of the Weyl–Dirac operator occur when the magnetic potential is scaled.
Keywords :
Linear spectral pencil , Eigenvalue counting function , Dirac operator , zero modes
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562802
Link To Document :
بازگشت