Title of article :
Uniqueness of nonnegative solutions for semipositone problems on exterior domains
Author/Authors :
Castro، نويسنده , , Alfonso and Sankar، نويسنده , , Lakshmi and Shivaji، نويسنده , , R.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
6
From page :
432
To page :
437
Abstract :
We consider the problem { − Δ u = λ K ( | x | ) f ( u ) , x ∈ Ω u = 0 if  | x | = r 0 u → 0 as  | x | → ∞ , where λ is a positive parameter, Δ u = div ( ∇ u ) is the Laplacian of u , Ω = { x ∈ R n ; n > 2 , | x | > r 0 } , K ∈ C 1 ( [ r 0 , ∞ ) , ( 0 , ∞ ) ) is such that lim r → ∞ K ( r ) = 0 and f ∈ C 1 ( [ 0 , ∞ ) , R ) is a concave function which is sublinear at ∞ and f ( 0 ) < 0 . We establish the uniqueness of nonnegative radial solutions when λ is large.
Keywords :
A priori estimates , Uniqueness results , Exterior domains , Semipositone problems
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562927
Link To Document :
بازگشت