Title of article :
Numerical analysis of semilinear elliptic equations with finite spectral interaction
Author/Authors :
Cal Neto، نويسنده , , José Teixeira and Tomei، نويسنده , , Carlos، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
15
From page :
63
To page :
77
Abstract :
We present an algorithm for solving − Δ u − f ( x , u ) = g with Dirichlet boundary conditions in a bounded domain Ω . The nonlinearities are non-resonant and have finite spectral interaction: no eigenvalue of − Δ D is an endpoint of ∂ 2 f ( Ω , R ) ¯ , which in turn only contains a finite number of eigenvalues. The algorithm is based on ideas used by Berger and Podolak to provide a geometric proof of the Ambrosetti–Prodi theorem and advances work by Smiley and Chun on the same problem.
Keywords :
Semilinear elliptic equations , finite element methods , Lyapunov–Schmidt decomposition
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1562972
Link To Document :
بازگشت