Title of article :
New real-variable characterizations of Musielak–Orlicz Hardy spaces
Author/Authors :
Liang، نويسنده , , Yiyu and Huang، نويسنده , , Jizheng and Yang، نويسنده , , Dachun، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Abstract :
Let φ : R n × [ 0 , ∞ ) → [ 0 , ∞ ) be such that φ ( x , ⋅ ) is an Orlicz function and φ ( ⋅ , t ) is a Muckenhoupt A ∞ ( R n ) weight. The Musielak–Orlicz Hardy space H φ ( R n ) is defined to be the space of all f ∈ S ′ ( R n ) such that the grand maximal function f ∗ belongs to the Musielak–Orlicz space L φ ( R n ) . Luong Dang Ky established its atomic characterization. In this paper, the authors establish some new real-variable characterizations of H φ ( R n ) in terms of the vertical or the non-tangential maximal functions, or the Littlewood–Paley g -function or g λ ∗ -function, via first establishing a Musielak–Orlicz Fefferman–Stein vector-valued inequality. Moreover, the range of λ in the g λ ∗ -function characterization of H φ ( R n ) coincides with the known best results, when H φ ( R n ) is the classical Hardy space H p ( R n ) , with p ∈ ( 0 , 1 ] , or its weighted variant.
Keywords :
Musielak–Orlicz function , Hardy space , atom , Maximal function , Littlewood–Paley g -function , Littlewood–Paley g ? ? -function
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications