Title of article :
Geometric characterizations of manifolds in Euclidean spaces by tangent cones
Author/Authors :
Bigolin، نويسنده , , Francesco and Greco، نويسنده , , Gabriele H. Greco، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
19
From page :
145
To page :
163
Abstract :
A remarkable and elementary fact that a locally compact set F of Euclidean space is a smooth manifold if (and only if) the lower and upper paratangent cones to F coincide at every point, is proved. The celebrated von Neumann’s result (1929) that a locally compact subgroup of the general linear group is a smooth manifold, is a straightforward application.
Keywords :
Clarke tangent cone , Bouligand tangent cones , Peano tangent cones , Severi tangent cones , Paratingent cones , Peano limits of sets , tangency in traditional sense , Differentiability , Kuratowski limits of sets , Paratangency in traditional sense , Painlevé–Kuratowski limits of sets , Tangent cones , Strict differentiability , Tangency and differentiability , C 1 manifolds
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563055
Link To Document :
بازگشت