Title of article :
A Sears-type self-adjointness result for discrete magnetic Schrِdinger operators
Author/Authors :
Milatovic، نويسنده , , Ognjen، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Pages :
9
From page :
801
To page :
809
Abstract :
In the context of a weighted graph with vertex set V and bounded vertex degree, we give a sufficient condition for the essential self-adjointness of the operator Δ σ + W , where Δ σ is the magnetic Laplacian and W : V → R is a function satisfying W ( x ) ≥ − q ( x ) for all x ∈ V , with q : V → [ 1 , ∞ ) . The condition is expressed in terms of completeness of a metric that depends on q and the weights of the graph. The main result is a discrete analogue of the results of I. Oleinik and M.A. Shubin in the setting of non-compact Riemannian manifolds.
Keywords :
Discrete magnetic Schrِdinger operator , Essential self-adjointness , Sears-type result , infinite graph , Bounded vertex degree
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2012
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563118
Link To Document :
بازگشت