Title of article :
Fredholm properties and nonlinear Dirichlet problems for mixed type operators
Author/Authors :
Lupo، نويسنده , , Daniela and Monticelli، نويسنده , , Dario D. and Payne، نويسنده , , Kevin R.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Abstract :
For a class of linear partial differential operators of mixed elliptic–hyperbolic type with homogeneous Dirichlet data on the entire boundary of suitable planar domains, we exploit the recent spectral theory of Lupo et al. [2] to establish a Fredholm alternative for weak solutions of the linear Dirichlet problem. This alternative is then used to study nonlinear Dirichlet problems with at most asymptotically linear nonlinearities, both in resonant and nonresonant cases. In particular, we obtain solvability results in nonresonant situations, a nonlinear Fredholm alternative (in the spirit of Landesman and Lazer) valid in both nonresonant and strongly resonant situations and establish a multiplicity result valid in nonresonant and weakly resonant situations.
Keywords :
nonlinear boundary value problems , Jumping nonlinearities , Spectral Theory , Fredholm alternatives , resonance , Topological methods , Mixed type PDE , variational methods
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications