Title of article :
Shuffles of copulas and a new measure of dependence
Author/Authors :
P. Ruankong، نويسنده , , P. and Santiwipanont، نويسنده , , T. and Sumetkijakan، نويسنده , , S.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
11
From page :
392
To page :
402
Abstract :
Using a characterization of Mutual Complete Dependence copulas, we show that, with respect to the Sobolev norm, the MCD copulas can be approximated arbitrarily closed by shuffles of Min. This result is then used to obtain a characterization of generalized shuffles of copulas introduced by Durante et al. in terms of MCD copulas and the ∗ -product discovered by Darsow, Nguyen and Olsen. Since any shuffle of a copula is the copula of the corresponding shuffle of the two continuous random variables, we define a new norm which is invariant under shuffling. This norm gives rise to a new measure of dependence which shares many properties with the maximal correlation coefficient, the only measure of dependence that satisfies all of Rényi’s postulates.
Keywords :
Shuffles of Min , Copulas , Measure of dependence , Shuffles of copulas , Measure-preserving , Sobolev norm ? -product
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563231
Link To Document :
بازگشت