Title of article :
On the global regularity for singular -systems under non-homogeneous Dirichlet boundary conditions
Author/Authors :
Beirمo da Veiga، نويسنده , , H.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
7
From page :
527
To page :
533
Abstract :
We consider the non-homogeneous Dirichlet boundary value problem for elliptic, singular, p -systems of N equations in n space variables, 1 < p ≤ 2 . We prove W 2 , q and C 1 , α regularity, up to the boundary, under suitable assumptions on the couple p , q . In particular, there is a constant K 0 , independent of p and q , such that our regularity results hold at least for q ≤ K 0 p − 2 . The singular case μ = 0 is covered. We extend earlier results of the author and F. Crispo, from the homogeneous to the non-homogeneous case.
Keywords :
Singular p -Laplacian systems , Regularity up to the boundary , Non-homogeneous boundary values
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563245
Link To Document :
بازگشت