Title of article :
Loewner equations on complete hyperbolic domains
Author/Authors :
Arosio، نويسنده , , Leandro، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
13
From page :
609
To page :
621
Abstract :
We prove that, on a complete hyperbolic domain D ⊂ C q , any Loewner PDE associated with a Herglotz vector field of the form H ( z , t ) = Λ ( z ) + O ( | z | 2 ) , where the eigenvalues of Λ have strictly negative real part, admits a solution given by a family of univalent mappings ( f t : D → C q ) which satisfies ∪ t ≥ 0 f t ( D ) = C q . If no real resonance occurs among the eigenvalues of Λ , then the family ( e Λ t ∘ f t ) is uniformly bounded in a neighborhood of the origin. We also give a generalization of Pommerenke’s univalence criterion on complete hyperbolic domains.
Keywords :
Loewner chains in several variables , Loewner equations , Evolution families , resonances
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563254
Link To Document :
بازگشت