Title of article :
The critical Fujita exponent for the fast diffusion equation with potential
Author/Authors :
Yang، نويسنده , , Chunxiao and Zhao، نويسنده , , Lizhong and Zheng، نويسنده , , Sining، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Abstract :
This paper studies the Cauchy problem for positive solutions of the fast diffusion equation with source and quadratically decaying potential u t = Δ u m − V ( x ) u m + u p in R n × ( 0 , T ) , where 1 − 2 m α + n < m < 1 , p > 1 , n ≥ 2 , V ( x ) ∼ ω | x | 2 with ω ≥ 0 as | x | → ∞ , and α is the positive root of m α ( m α + n − 2 ) − ω = 0 . We obtain the critical Fujita exponent p c = m + 2 m α + n to the problem in the sense that every nontrivial solution blows up in finite time when 1 < p ≤ p c , and there are both global and non-global solutions if p > p c .
Keywords :
Critical Fujita exponent , POTENTIAL , global solutions , Fast diffusion , Blow-up
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications