Title of article :
Longtime dynamics of the damped Boussinesq equation
Author/Authors :
Yang، نويسنده , , Zhijian، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
11
From page :
180
To page :
190
Abstract :
The paper studies the longtime dynamics of the damped Boussinesq equation u t t + Δ 2 u − Δ u t − Δ g ( u ) = f ( x ) . First, the existence of global solutions to the initial boundary value problem of the equation is obtained provided that the growth exponent of g ( u ) , say p , is either non-supercritical (subcritical and critical) or supercritical, especially, the stability of solutions is established when p is non-supercritical. Second, the existence of a global attractor and an exponential attractor for the related solution semigroup S ( t ) are respectively established in the non-supercritical case.
Keywords :
Well-posedness of global solutions , Longtime dynamics , exponential attractor , global attractor , Damped Boussinesq equation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563295
Link To Document :
بازگشت