Title of article :
Existence and multiplicity of semiclassical solutions for asymptotically Hamiltonian elliptic systems
Author/Authors :
Xiao، نويسنده , , Lu and Wang، نويسنده , , Jun and Fan، نويسنده , , Ming and Zhang، نويسنده , , Fubao، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
12
From page :
340
To page :
351
Abstract :
This paper is concerned with the following nonperiodic Hamiltonian elliptic system { − ε 2 △ u + V ( x ) u = H u ( x , u , v ) in R N , − ε 2 △ v + V ( x ) v = − H v ( x , u , v ) in R N , u ( x ) → 0 and v ( x ) → 0 as | x | → ∞ , where ε > 0 is a small parameter, and the potential V is bounded below, and H is asymptotically linear in z as | z | → ∞ with z = ( u , v ) . By applying a generalized linking theorem of strongly indefinite functionals, we obtain the existence of multiple semiclassical solutions for the above system.
Keywords :
variational methods , Generalized linking theorem , ( C ) c -condition
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563308
Link To Document :
بازگشت