Title of article :
Regularity of solutions to degenerate -Laplacian equations
Author/Authors :
Cruz-Uribe، نويسنده , , David H. Moen، نويسنده , , Kabe and Naibo، نويسنده , , Virginia، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Abstract :
We prove regularity results for solutions of the equation div ( 〈 A X u , X u 〉 p − 2 2 A X u ) = 0 , 1 < p < ∞ , where X = ( X 1 , … , X m ) is a family of vector fields satisfying Hörmander’s condition, and A is an m × m symmetric matrix that satisfies degenerate ellipticity conditions. If the degeneracy is of the form λ w ( x ) 2 / p | ξ | 2 ≤ 〈 A ( x ) ξ , ξ 〉 ≤ Λ w ( x ) 2 / p | ξ | 2 , w ∈ A p , then we show that solutions are locally Hölder continuous. If the degeneracy is of the form k ( x ) − 2 p ′ | ξ | 2 ≤ 〈 A ( x ) ξ , ξ 〉 ≤ k ( x ) 2 p | ξ | 2 , k ∈ A p ′ ∩ R H τ , where τ depends on the homogeneous dimension, then the solutions are continuous almost everywhere, and we give examples to show that this is the best result possible. We give an application to maps of finite distortion.
Keywords :
p -Laplacian , Hِrmander vector fields , A p weights
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications