Title of article :
On an operator Kantorovich inequality for positive linear maps
Author/Authors :
Lin، نويسنده , , Minghua، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
6
From page :
127
To page :
132
Abstract :
We improve the operator Kantorovich inequality as follows: Let A be a positive operator on a Hilbert space with 0 < m ≤ A ≤ M . Then for every unital positive linear map Φ , Φ ( A − 1 ) 2 ≤ ( ( M + m ) 2 4 M m ) 2 Φ ( A ) − 2 . As a consequence, Φ ( A − 1 ) Φ ( A ) + Φ ( A ) Φ ( A − 1 ) ≤ ( M + m ) 2 2 M m .
Keywords :
Positive linear maps , Operator inequalities , Kantorovich inequality , Schwarz inequality , Choi’s inequality , Wielandt inequality
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563511
Link To Document :
بازگشت